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Fitting partial differential equations to space-time dynamics

Markus Bär, Rainer Hegger, and Holger Kantz
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 24 June 1998!

The partial differential equations~PDEs! governing the dynamics of reaction-diffusion systems are recon-
structed from data representing the spatially extended systems. The fitted equations are validated by a com-
parison of their numerical solutions and the input data and by computation of the isoclines of the fitted PDEs.
@S1063-651X~99!02101-7#
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Nonlinearities in equations of motion often result in com
plex dynamical behavior such as bifurcations under par
eter variation and chaos. The experimental observation
such phenomena relies on the analysis of time series@1#. One
of the most interesting goals of nonlinear time series anal
is the reconstruction of equations of motion based only
observed data. This issue is well studied for systems wi
few active degrees of freedom. In pioneering works lo
linear models@2#, global models consisting of radial bas
functions@3#, neural nets@4#, and polynomials@5# have been
successfully used to construct forecast maps. Since o
only a single observable is recorded, these maps act o
reconstructed state space, usually the delay embedding s
@6,7#. Once such a map is reconstructed from the obser
data, it allows, e.g., for short time predictions and for t
construction of new time series through iteration~bootstrap-
ping!, but also for the estimation of Lyapunov spectra@8#.
Meanwhile there exists a well established knowledge ab
fitting model equations to maplike data, i.e., to data with
discrete time index.

In cases where all variables of physical interest are
served simultaneously, i.e., where the state space of the
tem is experimentally accessible, it makes sense to re
struct ordinary differential equations~ODEs! underlying the
dynamics. This has been done for many numerically sim
lated systems. For an example with experimental data fro
driven nonlinear electric resonance circuit see Ref.@9#. In
comparison to fitting forecast maps in the delay embedd
space, fitting ODEs additionally contains the difficulty
determining temporal derivatives from data that are recor
with a given sampling rate and are contaminated with a c
tain amount of measurement noise. It is technically poss
to fit ODEs also to noninvariate time series, but since cha
motion requires~in the autonomous case! a scalar equation
of at least third order in time, this is usually not consider
as a reasonable physical approach.

A widely studied class of more complex systems are s
tially extended nonequilibrium systems; their dynamics
routinely described by partial differential equations~PDEs!.
A lot of activity has focused on the emergence of spatiote
poral patterns@10#. These patterns are mostly periodic
space and stationary or periodic in time. Only recently,
amples for spatiotemporal chaos have been discovere
convection experiments@11# and in chemical reaction
@12,13#. Here we constrain ourselves to the study of reacti
diffusion processes that are often encountered in pat
PRE 591063-651X/99/59~1!/337~6!/$15.00
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forming chemical reactions@14# and biological systems@15#.
Often models for these systems are only of qualitative na
due to the complexity of the processes involved and beca
of a lack of knowledge of the basic mechanisms. Thus
would be desirable to verify such models by extracting eq
tions governing the dynamics in space and time from da
We restrict the analysis of this paper exclusively to nume
cally generated data, including a discussion on measurem
noise. The purposes of this paper are to prove the feasib
of this goal and to stimulate similar analysis of experimen
data. Estimates on the necessary spatial and temporal re
tion of data are given. We chose three models with incre
ing complexity that are known to exhibit periodic waves
well as spatiotemporal chaos@16–20# and created data by
numerical integration of these equations. The method
quires either simultaneous measurement of all dynam
variables as in one-variable systems encountered in nonli
optics@21# or reconstruction of the unmeasured quantities
additional assumptions about the dynamics~e.g., the validity
of amplitude equations near the onset of an instability
symmetries between the variables as in the method of c
plex demodulation@22#!. Under the constraint that all rel
evant variables are observed simultaneously, we addres
problem of identifying PDEs from these data. In comparis
to ODEs, additionally spatial derivatives have to be es
mated and more independent terms potentially enter
equations. We do not want to conceal that these are m
technical than conceptual problems. Fitting PDEs to s
tiotemporal dynamics can have implications on the und
standing of systems, in particular in order to obtain corr
tions to model equations that are derived involvi
approximations and heuristic arguments and in order to
parameters in model equations.

We model the unknown PDEs as polynomials
the independent variables. In the case of a two-compon
field in one space dimension these variables are
field uW 5(u,v) itself and its spatial derivatives, denote
by ux, vx, uxx, etc., in the following. We want
to derive expressionsu̇5 f (u,v,ux, vx, uxx, vxx . . . ) and
v̇5g(u,v,ux, vx, uxx, vxx, . . . ). For f and g we choose

multivariate polynomials of sufficiently high order that ca
be considered as Taylor expansions of the unknown non
ear functions. For a recent approach to this problem usin
different method see Ref.@23#.

We assume that the data are taken with a spacingh in
space andd in time, un,i5u(t5nd,x5 ih). The data set can
337 ©1999 The American Physical Society
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338 PRE 59MARKUS BÄR, RAINER HEGGER, AND HOLGER KANTZ
consist of either a few successive snapshots or a long s
of multichannel measurements at neighboring sites. H
many successive images or how many adjacent posit
have to be measured depends on the order of the hig
derivatives and on the desired accuracy. Approximations
the derivatives in different order are possible. Additional
tering can be used to suppress noise. Suitable estimators
the influence of noise are described in the last part of
paper. Due to the minimum of three independent obse
tions for symmetric derivative estimators of the first and s
ond derivatives, we need either at least three succes
snapshots or a time series of three neighboring spatial p
tions if we assume that no higher than second derivat
occur.

For the determination off we solve the minimization
problem

s25 (
$ i ,n%

S ut;n,i2( cjklmopun,i
j vn,i

k

3ux;n,i
l vx;n,i

m uxx;n,i
o vxx;n,i

p D 2
5
!

min ~1!

with respect to the parameterscjklmop ~a corresponding prob
lem is solved independently forg). The first sum extends
over a reasonably large set of tupl
(ut;n,i ,un,i ,vn,i , ux;n,i ,vx;n,i , uxx;n,i ,vxx;n,i). In order to
keep the number of fit parametersc . . . small, we consider
only a physically meaningful set of terms in the polynomi
e.g., we choose a highest power inu and v, consider only
even powers ofux andvx of the spatiotemporal patterns, an
exclude combinations of first and second derivatives beca
of symmetry properties (x→2x). The minimization requires
one to solve a set of coupled linear equations by matrix
version or, if many parameters are involved, employing s
gular value decomposition. Since this can be done extrem
fast, we explicitly look for the best of all possible combin
tions of a subset of these terms. When the number of te
does not exceed 20, we can compare all possible comb
tions, whereas for more terms, we employ a backward eli
nation scheme. We perform a fit including all terms, th
search for the term that when being excluded leads to
smallest increase of the error, and thus reduce step by
the model. When we speak here and in the following ab
the error we mean the value ofs from Eq. ~1! at the mini-
mum, normalized to the standard deviation of the tempo
derivative.

As a first example, we treat a model recently suggeste
capture dynamics of an extended system near
codimension-2 bifurcation~Takens-Bogdanov-point! @16#,

]u

]t
5v,

~2!
]v
]t

5~m2u2!v2u2au22u31
]2u

]x2
1k

]2v

]x2
,

with m51/5, a52.08, andk51. A random initial condition
was numerically integrated with time steps that were m
than a factor 10 finer than the sampling of the data used
the fits. For the numerical solution of these equations and
other examples that follow, periodic boundary conditions
employed and simple explicit Euler schemes are used.
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spatial and temporal discretization have been checked
convergence. Spatiotemporal patterns created by Eq.~2! re-
semble the pattern in Fig. 1.

For the fit of the PDE we compile a list of about 2
combinations of powers ofu, v, ux , vx , uxx , andvxx and
look for the best of all combinations of subsets of them. T
minimum value of Eq.~1! as a function of the subset sizen
decreases inn and saturates at an error around 1% wh
seven terms are included in the expression forg and only a
single term is used forf . These terms are in fact those of E
~2! above. The nullclines of these fitted equations are in p
fect agreement with those of Eq.~2! in those regions of the
u-v plane that are represented by the input data. Outside
area, the nullclines of the fit cannot be expected to be id
tical to those of the original system, although in this spec
case they are~see below!. As a final check of the model, we
take a random initial condition and integrate the fitted PD
The spatiotemporal patterns generated by the fitted equa
are shown in Fig. 1. They are qualitatively indistinguishab
from patterns generated by the original PDE.

Since we fitted noise free data generated by a PDE w
polynomials on the right-hand side by polynomials, it is n
surprising that the resulting PDE is of the same structure
Eq. ~2! with almost exactly the correct coefficients, such th
it passes the test for model validation. Due to the fact t
u̇5v, we could here rely on the sole measurement of
u-field component and fit a PDE of second order in tim
This approach is in fact similarly successful.

The good results reported for model~2! can be rational-
ized from the fact that the functionsf andg are polynomials

FIG. 1. Typical spatiotemporal pattern (u component! of the
PDE fitted to data from Eq.~2! starting from random initial condi-
tions. The parameters area52.08,m50.2, andk51.0, the system
length is 100, and the integration time 78.32. All units are dime
sionless.

FIG. 2. Minimum error of the optimal polynomial consisting o
n out of 22 terms in the polynomial ansatz forf andg of the model
~3!. The parameters used aree50.15,a50.84, andb50.20.
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PRE 59 339FITTING PARTIAL DIFFERENTIAL EQUATIONS TO . . .
themselves. Therefore, we study a simplified model of
oxidation on Pt~110!@17# where this is not the case:

]u

]t
52

1

e
u~u21!S u2

b1v
a D1

]2u

]x2
,

]v
]t

5h~u!2v, ~3!

h~u!5H 0, 0<u,1/3

126.75u~u21!2, 1/3<u<1

1, 1,u.

Again we compare all possible models based on se
tions out of 22 terms. The saturation of the error as a fu
tion of the number of termsn is shown in Fig. 2. Wherea
there exists a clear signature for theu equation@and we find
exactly the six terms in Eq.~3!#, there is a smooth transitio
for the v equation. The polynomial can reproduce the pie
wise defined functionh better with more terms included. Fo
a model consisting of ten terms we repeat the analysis
model validation: nullclines~Fig. 3! and numerical integra
tion ~Fig. 4!. Since here the fitted PDE is of a different stru
ture than the original one~global polynomial versus piece
wise polynomial! we show in Fig. 4 a comparison of mode
and fit.

The functionsf andg can be determined only in ranges
their arguments that are sampled by the data. Therefore,

FIG. 3. Nullclines of the PDE fitted to time series data from E
~3!, to be compared to Eq.~3!. The projections of the input data int
theu-v plane are shown in gray. The parameters are the same
Fig. 2.
c-
-

-

or

is

approach can be successful only for aperiodic data with s
tiotemporal disorder or for transient motion. If, on the co
trary, only a single periodic orbit is observed, this is th
insufficient to fixf andg at least as soon as the ansatz cho
for the fit is not of exactly the form of the true model equ
tion. In general, there is an extended region in param
space where spatiotemporal chaos is observed. Thus
possible to study also the parameter dependence of the fi
model equations. In a similar fashion, one can explore
domain where periodic patterns are observed by employ
suitable perturbations or forcing to the system. Here we w
restrict ourselves to model verification for selected param
values.

The experimental measurement of transient spatiotem
ral dynamics caused by external perturbations is a poss
cure in systems where the final patterns exhibit periodic
stationary temporal dynamics~for an experimental example
in a chemical reaction perturbed by laser illumination s
Ref. @24#!. We simulate numerically such a transient for E
~3! ~with slightly different parameters, where stable period
solutions exist! by subsequently shortening the system s
and consequently the wavelength of the pattern during in
gration. Performing the minimization for these transient d
leads to the nullclines shown in Fig. 5, where also the tr
sient solution is shown in gray. Due to the fact that th
particular solution covers a considerable part of theu-v
plane, we can again successfully determine the dynamic

As a third and considerably more complicated exam
we have studied data generated from a model of the cata
NO reduction with CO on Pt suggested by Imbihl and c
workers@18,19#:

]u

]t
5k1pCO~12u2v !2k2~u,v !u2k3uw1

]2u

]x2
,

]v
]t

5k1pNO~12u2v !2k4~u,v !v2k5v f ~u1v,w!1
]2v

]x2
,

~4!

]w

]t
5k5v f ~u1v,w!2k3uw.

The equations describe the dynamics of the concentration
CO (u), NO (v) and O (w) on the surface. The contro
parameters are the partial pressurespCO and pNO and the

.

in
2.37, both

FIG. 4. Typical spatiotemporal patterns (v component! of Eq. ~3! ~left! and of the PDE fitted to data from Eq.~3! ~right!, starting from

random initial conditions. The parameters are the same as in Fig. 2. The system length is 50 and the integration time shown is 12
in dimensionless units.
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340 PRE 59MARKUS BÄR, RAINER HEGGER, AND HOLGER KANTZ
catalyst temperatureT that enters via Arrhenius-like term
into the desorption rate constantsk2 andk4, the reaction rate
of CO oxidationk3 , and the rate of NO dissociationk5. The
desorption rates of NO and CO also contain an exponen
dependence on the coverage of CO and NO, namely,

k2,45n2,4exp$2[Ead
CO,NO2k6~u1v !2]/kBT%. ~5!

This dependence is crucial for the occurrence of dyna
instability and has been termed surface explosion, since
increase in the coverage leads to a very rapid increas
desorption of NO and CO@19#. The functionf (u1v,w) in-
dicates the amount of empty surface sites and has the em
cally determined form f (u1v,w)5max@12(u1v)/0.61
2w/0.4,0# @19#. The dynamics of reaction-diffusion wave
in this model has been investigated recently by Christo
@20#. He found that the model exhibits stable pulses at l
pCO, which upon an increase ofpCO develop modulations
and finally lead to complex periodic patterns with sponta
ous creation of excitation pulses. We have generated da
the complex periodic regime in parameter space subjec
constant external perturbations that lead to transient
tiotemporally chaotic motion.

Because we have to deal with more independent varia
and the exponential term requires a polynomial of hig
order for a reasonable fit, we compose the right-hand sid
the PDE of about 100 terms, which are then reduced
backward elimination. Thus we perform a first fit with a
terms included and then eliminate term by term, each s
skipping the term whose omission leads to the least incre
of the error. We find reasonable errors of about 2% w
models as small as about 20 terms~see Fig. 6!.

Since data from this model fill the three-dimension
phase space (u, v, w) only sparsely, the equations of motio
thus obtained are valid only in close vicinity to the observ
data~on the ‘‘attractor’’!, whereas outside they are conside
ably wrong~in particular, due to the polynomial structure
our fit, the fitted functions diverge for large argument!.
Therefore, we cannot present a reasonable comparison
tween the nullclines of the fitted PDE and of Eq.~4!. Under
iteration, however, the fitted equations are stable and y
periodic space-time patterns that are qualitatively the sam
those of Eq.~4! reported in Ref.@20# ~Fig. 7!, when we
choose a spatial pattern from Eq.~4! as an initial condition.

FIG. 5. Nullclines of the fitted PDE obtained from the almo
periodic data shown in gray, to be compared to Eq.~3!. The param-
eters aree50.05,a50.84, andb50.1.
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Starting from random initial conditions, the integration lea
to diverging solutions since such an initial condition is ge
erally too far from the attractor and thus outside the range
phase space where we can expect the fitted equations t
valid.

It has been suggested to eliminate one variable of Eq.~4!
adiabatically. Fitting PDEs of only two variables to the tim
evolution of different components of the field, we can in fa
confirm that the dynamics of theu variable is well deter-
mined by only theu andv fields ~2% error!, but that thev
dynamics is less well determined by that at least with a po
nomial ansatz~about 7% error!, and that, finally, thew dy-
namics is badly predicted byv andw ~13% error! and even
worse byu andw ~19% error!. Thus an adiabatic elimination
of w seems possible when accepting some error.

We want to conclude with a discussion of a crucial aspe
namely, the estimation of the temporal and spatial deri
tives. Apart from being sufficiently noise free, measureme
have to be performed with sufficient temporal and spa
resolution. The simplest~symmetric! estimators are exact in
orderd2 andh2, respectively:

ut;n,i5
1

2d
~un11,i2un21,i !,

ux;n,i5
1

2h
~un,i 112un,i 21!, ~6!

FIG. 6. Increase of the errors when applying the backw
elimination technique to obtain the best model withn terms for data
from Eq. ~4!. The parameters used in Eq.~4! are pCO58.5
31027mbar, pNO59.2531027mbar, andT5424 K. The diffusion
constants of CO and NO are set to 1@see Eq.~4!#.

FIG. 7. Spatiotemporal pattern created by the polynomial P
fitted to data from Eq.~4! (u field!. The parameters are the same
in Fig. 6. The system length and the time are given in dimension
units obtained by a proper scaling of Eq.~4!. In rescaled physical
units the time of integration shown corresponds to approxima
980 s and the length shown is 2 mm.
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uxx;n,i5
1

h2
~un,i 111un,i 2122un,i !,

and forv correspondingly. One can easily use estimators
fourth or sixth order where, however, five or seven succ
sive images or neighboring time series are required.
rough samplings the use of higher-order estimators is ad
tageous, as well as for noise contamination. In Fig. 8
show the average error when estimating the second sp
derivativesuxx from the pattern shown in Fig. 1, as a fun
tion of the spatial resolution@replacing, e.g.,i 61 by i 6k in
Eq. ~6!#, for noise free data and data with 0.5% white me
surement noise. The three line types represent Taylor est
tors of second, fourth, and sixth order. For high spatial re
lution and thus high degeneracy of the variables entering
differences, noise introduces large errors, whereas bad r
lution ~largek) introduces large systematic errors but alm
eliminates the errors due to noise. On a noise-lev
dependent intermediatek the total error is lowest, where th
higher-order estimators are superior. The situation is sim
for first order derivatives, but errors due to noise are mu
smaller. The use of Savitzky-Golay filters@25# can reduce
errors due to noise by about one-third, but noise remain
crucial problem. Nonlinear noise reduction techniques m
help @26#. As for the required spatial resolution, in typic
reaction-diffusion systems, the length scale on which c
centrations change considerably lies between millimeters
reactions in solution and micrometers for surface reacti
and biological systems. Sampling a grid in space with th

FIG. 8. Errors of the estimated second derivativesuxx for the
pattern of Fig. 1 as a function of the spatial resolution~distancek of
the given sampling! for noise free data~converging towards zero fo
smallk) and data with measurement noise~large errors at smallk).
For largek ~low spatial resolution! the systematic errors are dom
nant.
s
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resolutions is possible with experimental techniques and t
sufficient for a determination of the spatial derivatives.

To conclude, we have shown that one can successf
model PDEs from data if the relevant components of
fields are experimentally observed. Our polynomial appro
can be replaced by other nonlinear functions, where it
advantageous when the fit parameters are contained line
~which is not the case for neural nets!.

Space and time in PDEs can be rescaled independent
for simplicity d andh are set to unity, the integration of th
resulting PDE reproduces the observed data when sample
the same way. Independent of this, the nullclines of the fit
equations represent the nullclines of the system, without
ing information about the sampling in space and time. T
variablesu andv can be rescaled and shifted and in expe
ments are rescaled and shifted in order to exploit the
ranges of analog-to-digital converters. Altogether this lea
to the phenomenon that every single PDE is representativ
a whole family of equations. This has to be taken into a
count when PDEs fitted to experimental data and mo
equations are to be compared. An unknown offset in
variables makes the situation quite complicated since und
shift of u or v even new combinations of powers may occu
The best strategy is thus to use all these operations to re
the number of terms and to replace as many as possible
trivial coefficients by unity.

The fitting of PDEs with polynomials has been tested
reaction-diffusion–type models. Thus only first and seco
derivatives have been included in the ansatz. Some pa
forming systems are governed by spatially nonlocal coupl
terms, e.g., in nonlinear optics@21# and electrochemistry
@27#. Models of these systems contain either integral term
derivatives in exponentials. Both types of coupling terms c
be expanded in Taylor series of the local derivatives~see,
e.g., Ref.@15#, Chap. 9!. Thus an extended polynomial ap
proach is also applicable to these systems. Moreover,
fitting approach introduced can be used to estimate the q
ity of reduced models such as amplitude equations~for an
example see Refs.@28# and @29#!. The method is useful in
cases where all observables are known, but no informa
can be given on the physical model. It is suitable especi
for dynamical systems with high attractor dimension~spa-
tiotemporal chaos!. Thus it supplements model reduction a
proaches using Galerkin projections or empirical eigenfu
tions@30#, which are often used to reconstruct spatiotempo
dynamics if the attractor has only a few degrees of dynam
freedom.

We are grateful to Jan Christoph and Markus Eiswirth
communicating their unpublished results on the NO-C
model @see Eq.~4!#.
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